聚类是一种无监督的学习, 它将相似的对象归到一个簇中, 将不相似对象归到不同簇中.
相似这一概念取决于所选择的相似度计算方法.
K-Means 是发现给定数据集的 K 个簇的聚类算法, 之所以称之为 K-均值
是因为它可以发现 K 个不同的簇, 且每个簇的中心采用簇中所含值的均值计算而成.
簇个数 K 是用户指定的, 每一个簇通过其质心(centroid), 即簇中所有点的中心来描述.
聚类与分类算法的最大区别在于, 分类的目标类别已知, 而聚类的目标类别是未知的.
优点: 容易实现
缺点:可能收敛到局部最小值, 在大规模数据集上收敛较慢
使用数据类型 : 数值型数据
主要用来聚类, 但是类别是未知的.
例如: 对地图上的点进行聚类.
有关 簇
和 质心
术语更形象的介绍, 请参考下图:
上述过程的 伪代码
如下:
收集数据:使用任意方法
准备数据:需要数值型数据类计算距离, 也可以将标称型数据映射为二值型数据再用于距离计算
分析数据:使用任意方法
训练算法:此步骤不适用于 K-Means 算法
测试算法:应用聚类算法、观察结果.可以使用量化的误差指标如误差平方和(后面会介绍)来评价算法的结果.
使用算法:可以用于所希望的任何应用.通常情况下, 簇质心可以代表整个簇的数据来做出决策.
# 从文本中构建矩阵,加载文本文件,然后处理
def loadDataSet(fileName): # 通用函数,用来解析以 tab 键分隔的 floats(浮点数),例如: 1.658985 4.285136
dataMat = []
fr = open(fileName)
for line in fr.readlines():
curLine = line.strip().split('\t')
fltLine = map(float,curLine) # 映射所有的元素为 float(浮点数)类型
dataMat.append(fltLine)
return dataMat
# 计算两个向量的欧式距离(可根据场景选择)
def distEclud(vecA, vecB):
return sqrt(sum(power(vecA - vecB, 2))) # la.norm(vecA-vecB)
# 为给定数据集构建一个包含 k 个随机质心的集合。随机质心必须要在整个数据集的边界之内,这可以通过找到数据集每一维的最小和最大值来完成。然后生成 0~1.0 之间的随机数并通过取值范围和最小值,以便确保随机点在数据的边界之内。
def randCent(dataSet, k):
n = shape(dataSet)[1] # 列的数量
centroids = mat(zeros((k,n))) # 创建k个质心矩阵
for j in range(n): # 创建随机簇质心,并且在每一维的边界内
minJ = min(dataSet[:,j]) # 最小值
rangeJ = float(max(dataSet[:,j]) - minJ) # 范围 = 最大值 - 最小值
centroids[:,j] = mat(minJ + rangeJ * random.rand(k,1)) # 随机生成
return centroids
# k-means 聚类算法
# 该算法会创建k个质心,然后将每个点分配到最近的质心,再重新计算质心。
# 这个过程重复数次,直到数据点的簇分配结果不再改变位置。
# 运行结果(多次运行结果可能会不一样,可以试试,原因为随机质心的影响,但总的结果是对的, 因为数据足够相似,也可能会陷入局部最小值)
def kMeans(dataSet, k, distMeas=distEclud, createCent=randCent):
m = shape(dataSet)[0] # 行数
clusterAssment = mat(zeros((m, 2))) # 创建一个与 dataSet 行数一样,但是有两列的矩阵,用来保存簇分配结果
centroids = createCent(dataSet, k) # 创建质心,随机k个质心
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(m): # 循环每一个数据点并分配到最近的质心中去
minDist = inf; minIndex = -1
for j in range(k):
distJI = distMeas(centroids[j,:],dataSet[i,:]) # 计算数据点到质心的距离
if distJI < minDist: # 如果距离比 minDist(最小距离)还小,更新 minDist(最小距离)和最小质心的 index(索引)
minDist = distJI; minIndex = j
if clusterAssment[i, 0] != minIndex: # 簇分配结果改变
clusterChanged = True # 簇改变
clusterAssment[i, :] = minIndex,minDist**2 # 更新簇分配结果为最小质心的 index(索引),minDist(最小距离)的平方
print centroids
for cent in range(k): # 更新质心
ptsInClust = dataSet[nonzero(clusterAssment[:, 0].A==cent)[0]] # 获取该簇中的所有点
centroids[cent,:] = mean(ptsInClust, axis=0) # 将质心修改为簇中所有点的平均值,mean 就是求平均值的
return centroids, clusterAssment
在 kMeans 的函数测试中,可能偶尔会陷入局部最小值(局部最优的结果,但不是全局最优的结果).
在 kMeans 的函数测试中,可能偶尔会陷入局部最小值(局部最优的结果,但不是全局最优的结果).
局部最小值的的情况如下:
所以为了克服 KMeans 算法收敛于局部最小值的问题,有更厉害的大佬提出了另一个称之为二分K-均值(bisecting K-Means)的算法.
该算法首先将所有点作为一个簇,然后将该簇一分为二。
之后选择其中一个簇继续进行划分,选择哪一个簇进行划分取决于对其划分时候可以最大程度降低 SSE(平方和误差)的值。
上述基于 SSE 的划分过程不断重复,直到得到用户指定的簇数目为止。
另一种做法是选择 SSE 最大的簇进行划分,直到簇数目达到用户指定的数目位置。 接下来主要介绍该做法。
# 二分 KMeans 聚类算法, 基于 kMeans 基础之上的优化,以避免陷入局部最小值
def biKMeans(dataSet, k, distMeas=distEclud):
m = shape(dataSet)[0]
clusterAssment = mat(zeros((m,2))) # 保存每个数据点的簇分配结果和平方误差
centroid0 = mean(dataSet, axis=0).tolist()[0] # 质心初始化为所有数据点的均值
centList =[centroid0] # 初始化只有 1 个质心的 list
for j in range(m): # 计算所有数据点到初始质心的距离平方误差
clusterAssment[j,1] = distMeas(mat(centroid0), dataSet[j,:])**2
while (len(centList) < k): # 当质心数量小于 k 时
lowestSSE = inf
for i in range(len(centList)): # 对每一个质心
ptsInCurrCluster = dataSet[nonzero(clusterAssment[:,0].A==i)[0],:] # 获取当前簇 i 下的所有数据点
centroidMat, splitClustAss = kMeans(ptsInCurrCluster, 2, distMeas) # 将当前簇 i 进行二分 kMeans 处理
sseSplit = sum(splitClustAss[:,1]) # 将二分 kMeans 结果中的平方和的距离进行求和
sseNotSplit = sum(clusterAssment[nonzero(clusterAssment[:,0].A!=i)[0],1]) # 将未参与二分 kMeans 分配结果中的平方和的距离进行求和
print "sseSplit, and notSplit: ",sseSplit,sseNotSplit
if (sseSplit + sseNotSplit) < lowestSSE: # 总的(未拆分和已拆分)误差和越小,越相似,效果越优化,划分的结果更好(注意:这里的理解很重要,不明白的地方可以和我们一起讨论)
bestCentToSplit = i
bestNewCents = centroidMat
bestClustAss = splitClustAss.copy()
lowestSSE = sseSplit + sseNotSplit
# 找出最好的簇分配结果
bestClustAss[nonzero(bestClustAss[:,0].A == 1)[0],0] = len(centList) # 调用二分 kMeans 的结果,默认簇是 0,1. 当然也可以改成其它的数字
bestClustAss[nonzero(bestClustAss[:,0].A == 0)[0],0] = bestCentToSplit # 更新为最佳质心
print 'the bestCentToSplit is: ',bestCentToSplit
print 'the len of bestClustAss is: ', len(bestClustAss)
# 更新质心列表
centList[bestCentToSplit] = bestNewCents[0,:].tolist()[0] # 更新原质心 list 中的第 i 个质心为使用二分 kMeans 后 bestNewCents 的第一个质心
centList.append(bestNewCents[1,:].tolist()[0]) # 添加 bestNewCents 的第二个质心
clusterAssment[nonzero(clusterAssment[:,0].A == bestCentToSplit)[0],:]= bestClustAss # 重新分配最好簇下的数据(质心)以及SSE
return mat(centList), clusterAssment
上述函数可以运行多次,聚类会收敛到全局最小值,而原始的 kMeans() 函数偶尔会陷入局部最小值。
运行参考结果如下: