简介

本章的目的是让你了解和运行 TensorFlow!

在开始之前, 让我们先看一段使用 Python API 撰写的 TensorFlow 示例代码, 让你对将要学习的内容有初步的印象.

这段很短的 Python 程序生成了一些三维数据, 然后用一个平面拟合它.

import tensorflow as tf
import numpy as np

# 使用 NumPy 生成假数据(phony data), 总共 100 个点.
x_data = np.float32(np.random.rand(2, 100)) # 随机输入
y_data = np.dot([0.100, 0.200], x_data) + 0.300

# 构造一个线性模型
# 
b = tf.Variable(tf.zeros([1]))
W = tf.Variable(tf.random_uniform([1, 2], -1.0, 1.0))
y = tf.matmul(W, x_data) + b

# 最小化方差
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)

# 初始化变量
init = tf.initialize_all_variables()

# 启动图 (graph)
sess = tf.Session()
sess.run(init)

# 拟合平面
for step in xrange(0, 201):
    sess.run(train)
    if step % 20 == 0:
        print step, sess.run(W), sess.run(b)

# 得到最佳拟合结果 W: [[0.100  0.200]], b: [0.300]

为了进一步激发你的学习欲望, 我们想让你先看一下 TensorFlow 是如何解决一个经典的机器 学习问题的. 在神经网络领域, 最为经典的问题莫过于 MNIST 手写数字分类问题. 我们准备了 两篇不同的教程, 分别面向机器学习领域的初学者和专家. 如果你已经使用其它软件训练过许多 MNIST 模型, 请阅读高级教程 (红色药丸链接). 如果你以前从未听说过 MNIST, 请阅读初级教程 (蓝色药丸链接). 如果你的水平介于这两类人之间, 我们建议你先快速浏览初级教程, 然后再阅读高级教程.

面向机器学习初学者的 MNIST 初级教程 面向机器学习专家的 MNIST 高级教程

图片由 CC BY-SA 4.0 授权; 原作者 W. Carter

如果你已经下定决心, 准备学习和安装 TensorFlow, 你可以略过这些文字, 直接阅读 后面的章节. 不用担心, 你仍然会看到 MNIST -- 在阐述 TensorFlow 的特性时, 我们还会使用 MNIST 作为一个样例.

推荐随后阅读:

原文:Introduction 翻译:@doc001 校对:@yangtze


书籍推荐