# 偏微分方程

TensorFlow 不仅仅是用来机器学习，它更可以用来模拟仿真。在这里，我们将通过模拟仿真几滴落入一块方形水池的雨点的例子，来引导您如何使用 TensorFlow 中的偏微分方程来模拟仿真的基本使用方法。

## 基本设置

#导入模拟仿真需要的库
import tensorflow as tf
import numpy as np

#导入可视化需要的库
import PIL.Image
from cStringIO import StringIO
from IPython.display import clear_output, Image, display


def DisplayArray(a, fmt='jpeg', rng=[0,1]):
"""Display an array as a picture."""
a = (a - rng[0])/float(rng[1] - rng[0])*255
a = np.uint8(np.clip(a, 0, 255))
f = StringIO()
PIL.Image.fromarray(a).save(f, fmt)
display(Image(data=f.getvalue()))


sess = tf.InteractiveSession()


## 定义计算函数

def make_kernel(a):
"""Transform a 2D array into a convolution kernel"""
a = np.asarray(a)
a = a.reshape(list(a.shape) + [1,1])
return tf.constant(a, dtype=1)

def simple_conv(x, k):
"""A simplified 2D convolution operation"""
x = tf.expand_dims(tf.expand_dims(x, 0), -1)
y = tf.nn.depthwise_conv2d(x, k, [1, 1, 1, 1], padding='SAME')
return y[0, :, :, 0]

def laplace(x):
"""Compute the 2D laplacian of an array"""
laplace_k = make_kernel([[0.5, 1.0, 0.5],
[1.0, -6., 1.0],
[0.5, 1.0, 0.5]])
return simple_conv(x, laplace_k)


## 定义偏微分方程

N = 500


# Initial Conditions -- some rain drops hit a pond

# Set everything to zero
u_init = np.zeros([N, N], dtype="float32")
ut_init = np.zeros([N, N], dtype="float32")

# Some rain drops hit a pond at random points
for n in range(40):
a,b = np.random.randint(0, N, 2)
u_init[a,b] = np.random.uniform()

DisplayArray(u_init, rng=[-0.1, 0.1])


# Parameters:
# eps -- time resolution
# damping -- wave damping
eps = tf.placeholder(tf.float32, shape=())
damping = tf.placeholder(tf.float32, shape=())

# Create variables for simulation state
U  = tf.Variable(u_init)
Ut = tf.Variable(ut_init)

# Discretized PDE update rules
U_ = U + eps * Ut
Ut_ = Ut + eps * (laplace(U) - damping * Ut)

# Operation to update the state
step = tf.group(
U.assign(U_),
Ut.assign(Ut_))


## 开始仿真

# Initialize state to initial conditions
tf.initialize_all_variables().run()

# Run 1000 steps of PDE
for i in range(1000):
# Step simulation
step.run({eps: 0.03, damping: 0.04})
# Visualize every 50 steps
if i % 50 == 0:
clear_output()
DisplayArray(U.eval(), rng=[-0.1, 0.1])


• #### 机器学习基础笔记

zhjunqin tensorflow python 43页 2018年6月2日
0

• #### Sklearn 与 TensorFlow 机器学习实用指南

ApacheCN tensorflow 20页 2018年5月3日
916

• #### Java后端开发相关学习笔记

Kuangcp java linux python 172页 2018年6月24日
23