练习38:哈希算法

原文:Exercise 38: Hashmap Algorithms

译者:飞龙

你需要在这个练习中实现下面这三个哈希函数:

FNV-1a

以创造者Glenn Fowler、Phong Vo 和 Landon Curt Noll的名字命名。这个算法产生合理的数值并且相当快。

Adler-32

以Mark Adler命名。一个比较糟糕的算法,但是由来已久并且适于学习。

DJB Hash

由Dan J. Bernstein (DJB)发明的哈希算法,但是难以找到这个算法的讨论。它非常快,但是结果不是很好。

你应该看到我使用了Jenkins hash作为Hashmap数据结构的默认哈希函数,所以这个练习的重点会放在这三个新的函数上。它们的代码通常来说不多,并且没有任何优化。像往常一样我会放慢速度来让你理解。

头文件非常简单,所以我以它开始:

#ifndef hashmap_algos_h
#define hashmap_algos_h

#include <stdint.h>

uint32_t Hashmap_fnv1a_hash(void *data);

uint32_t Hashmap_adler32_hash(void *data);

uint32_t Hashmap_djb_hash(void *data);

#endif

我只是声明了三个函数,我会在hashmap_algos.c文件中实现它们:

#include <lcthw/hashmap_algos.h>
#include <lcthw/bstrlib.h>

// settings taken from
// http://www.isthe.com/chongo/tech/comp/fnv/index.html#FNV-param
const uint32_t FNV_PRIME = 16777619;
const uint32_t FNV_OFFSET_BASIS = 2166136261;

uint32_t Hashmap_fnv1a_hash(void *data)
{
    bstring s = (bstring)data;
    uint32_t hash = FNV_OFFSET_BASIS;
    int i = 0;

    for(i = 0; i < blength(s); i++) {
        hash ^= bchare(s, i, 0);
        hash *= FNV_PRIME;
    }

    return hash;
}

const int MOD_ADLER = 65521;

uint32_t Hashmap_adler32_hash(void *data)
{
    bstring s = (bstring)data;
    uint32_t a = 1, b = 0;
    int i = 0;

    for (i = 0; i < blength(s); i++)
    {
        a = (a + bchare(s, i, 0)) % MOD_ADLER;
        b = (b + a) % MOD_ADLER;
    }

    return (b << 16) | a;
}

uint32_t Hashmap_djb_hash(void *data)
{
    bstring s = (bstring)data;
    uint32_t hash = 5381;
    int i = 0;

    for(i = 0; i < blength(s); i++) {
        hash = ((hash << 5) + hash) + bchare(s, i, 0); /* hash * 33 + c */
    }

    return hash;
}

这个文件中有三个哈希函数。你应该注意到我默认使用bstring作为键,并且使用了bchare函数从字符串获取字符,然而如果字符超出了字符串的长度会返回0。

这些算法中每个都可以在网上搜索到,所以你需要搜索它们并阅读相关内容。同时我主要使用维基百科上的结果,之后参照了其它来源。

接着我为每个算法编写了单元测试,同时也测试了它们在多个桶中的分布情况。

#include <lcthw/bstrlib.h>
#include <lcthw/hashmap.h>
#include <lcthw/hashmap_algos.h>
#include <lcthw/darray.h>
#include "minunit.h"

struct tagbstring test1 = bsStatic("test data 1");
struct tagbstring test2 = bsStatic("test data 2");
struct tagbstring test3 = bsStatic("xest data 3");

char *test_fnv1a()
{
    uint32_t hash = Hashmap_fnv1a_hash(&test1);
    mu_assert(hash != 0, "Bad hash.");

    hash = Hashmap_fnv1a_hash(&test2);
    mu_assert(hash != 0, "Bad hash.");

    hash = Hashmap_fnv1a_hash(&test3);
    mu_assert(hash != 0, "Bad hash.");

    return NULL;
}

char *test_adler32()
{
    uint32_t hash = Hashmap_adler32_hash(&test1);
    mu_assert(hash != 0, "Bad hash.");

    hash = Hashmap_adler32_hash(&test2);
    mu_assert(hash != 0, "Bad hash.");

    hash = Hashmap_adler32_hash(&test3);
    mu_assert(hash != 0, "Bad hash.");

    return NULL;
}

char *test_djb()
{
    uint32_t hash = Hashmap_djb_hash(&test1);
    mu_assert(hash != 0, "Bad hash.");

    hash = Hashmap_djb_hash(&test2);
    mu_assert(hash != 0, "Bad hash.");

    hash = Hashmap_djb_hash(&test3);
    mu_assert(hash != 0, "Bad hash.");

    return NULL;
}

#define BUCKETS 100
#define BUFFER_LEN 20
#define NUM_KEYS BUCKETS * 1000
enum { ALGO_FNV1A, ALGO_ADLER32, ALGO_DJB};

int gen_keys(DArray *keys, int num_keys)
{
    int i = 0;
    FILE *urand = fopen("/dev/urandom", "r");
    check(urand != NULL, "Failed to open /dev/urandom");

    struct bStream *stream = bsopen((bNread)fread, urand);
    check(stream != NULL, "Failed to open /dev/urandom");

    bstring key = bfromcstr("");
    int rc = 0;

    // FNV1a histogram
    for(i = 0; i < num_keys; i++) {
        rc = bsread(key, stream, BUFFER_LEN);
        check(rc >= 0, "Failed to read from /dev/urandom.");

        DArray_push(keys, bstrcpy(key));
    }

    bsclose(stream);
    fclose(urand);
    return 0;

error:
    return -1;
}

void destroy_keys(DArray *keys)
{
    int i = 0;
    for(i = 0; i < NUM_KEYS; i++) {
        bdestroy(DArray_get(keys, i));
    }

    DArray_destroy(keys);
}

void fill_distribution(int *stats, DArray *keys, Hashmap_hash hash_func)
{
    int i = 0;
    uint32_t hash = 0;

    for(i = 0; i < DArray_count(keys); i++) {
        hash = hash_func(DArray_get(keys, i));
        stats[hash % BUCKETS] += 1;
    }

}

char *test_distribution()
{
    int i = 0;
    int stats[3][BUCKETS] = {{0}};
    DArray *keys = DArray_create(0, NUM_KEYS);

    mu_assert(gen_keys(keys, NUM_KEYS) == 0, "Failed to generate random keys.");

    fill_distribution(stats[ALGO_FNV1A], keys, Hashmap_fnv1a_hash);
    fill_distribution(stats[ALGO_ADLER32], keys, Hashmap_adler32_hash);
    fill_distribution(stats[ALGO_DJB], keys, Hashmap_djb_hash);

    fprintf(stderr, "FNV\tA32\tDJB\n");

    for(i = 0; i < BUCKETS; i++) {
        fprintf(stderr, "%d\t%d\t%d\n",
                stats[ALGO_FNV1A][i],
                stats[ALGO_ADLER32][i],
                stats[ALGO_DJB][i]);
    }

    destroy_keys(keys);

    return NULL;
}

char *all_tests()
{
    mu_suite_start();

    mu_run_test(test_fnv1a);
    mu_run_test(test_adler32);
    mu_run_test(test_djb);
    mu_run_test(test_distribution);

    return NULL;
}

RUN_TESTS(all_tests);

我在代码中将BUCKETS的值设置得非常高,因为我的电脑足够快。如果你将它和NUM_KEYS调低,就会比较慢了。这个测试运行之后,对于每个哈希函数,通过使用R语言做统计分析,可以观察键的分布情况。

我实现它的方式是使用gen_keys函数生成键的大型列表。这些键从/dev/urandom设备中获得,它们是一些随机的字节。之后我使用了这些键来调用fill_distribution,填充了stats数组,这些键计算哈希值后会被放入理论上的一些桶中。所有这类函数会遍历所有键,计算哈希,之后执行类似Hashmap所做的事情来寻找正确的桶。

最后我只是简单打印出一个三列的表格,包含每个桶的最终数量,展示了每个桶中随机储存了多少个键。之后可以观察这些数值,来判断这些哈希函数是否合理对键进行分配。

你会看到什么

教授R是这本书范围之外的内容,但是如果你想试试它,可以访问r-project.org

下面是一个简略的shell会话,向你展示了我如何运行1tests/hashmap_algos_test来获取test_distribution产生的表(这里没有展示),之后使用R来观察统计结果:

$ tests/hashmap_algos_tests
# copy-paste the table it prints out
$ vim hash.txt
$ R
> hash <- read.table("hash.txt", header=T)
> summary(hash)
      FNV            A32              DJB      
 Min.   : 945   Min.   : 908.0   Min.   : 927  
 1st Qu.: 980   1st Qu.: 980.8   1st Qu.: 979  
 Median : 998   Median :1000.0   Median : 998  
 Mean   :1000   Mean   :1000.0   Mean   :1000  
 3rd Qu.:1016   3rd Qu.:1019.2   3rd Qu.:1021  
 Max.   :1072   Max.   :1075.0   Max.   :1082  

首先我只是运行测试,它会在屏幕上打印表格。之后我将它复制粘贴到下来并使用vim hash.txt来储存数据。如果你观察数据,它会带有显示这三个算法的FNV A32 DJB表头。

接着,我运行R来使用read.table命令加载数据集。它是个非常智能的函数,适用于这种tab分隔的数据,我只要告诉它header=T,它就知道数据集中带有表头。

最后,我家在了数据并且可以使用summary来打印出它每行的统计结果。这里你可以看到每个函数处理随机数据实际上都没有问题。我会解释每个行的意义:

Min.

它是列出数据的最小值。FNV似乎在这方面是最优的,因为它有最大的结果,也就是说它的下界最严格。

1st Qu.

数据的第一个四分位点。

Median

如果你对它们排序,这个数值就是最重点的那个数。中位数比起均值来讲更有用一些。

Mean

均值对大多数人意味着“平均”,它是数据的总数比数量。如果你观察它们,所有均值都是1000,这非常棒。如果你将它去中位数对比,你会发现,这三个中位数都很接近均值。这就意味着这些数据都没有“偏向”一端,所以均值是可信的。

3rd Qu.

数据后四分之一的起始点,代表了尾部的数值。

Max.

这是数据中的最大值,代表了它们的上界。

观察这些数据,你会发现这些哈希算法似乎都适用于随机的键,并且均值与我设置的NUM_KEYS匹配。我所要找的就是如果我为每个桶中生成了1000个键,那么平均每个桶中就应该有100个键。如果哈希函数工作不正常,你会发现统计结果中均值不是1000,并且第一个和第三个四分位点非常高。一个好的哈希算法应该使平均值为1000,并且具有严格的范围。

同时,你应该明白即使在这个单元测试的不同运行之间,你的数据的大多数应该和我不同。

如何使它崩溃

这个练习的最后,我打算向你介绍使它崩溃的方法。我需要让你变写你能编写的最烂的哈希函数,并且我会使用数据来证明它确实很烂。你可以使用R来进行统计,就像我上面一样,但也可能你知道其他可以使用的工具来进行相同的统计操作。

这里的目标是让一个哈希函数,它表面看起来是正常的,但实际运行就得到一个糟糕的均值,并且分布广泛。这意味着你不能只让你返回1,而是需要返回一些看似正常的数值,但是分布广泛并且都填充到相同的桶中。

如果你对这四个函数之一做了一些小修改来完成任务,我会给你额外的分数。

这个练习的目的是,想像一下一些“友好”的程序员见到你并且打算改进你的哈希函数,但是实际上只是留了个把你的Hashmap搞砸的后门。

附加题

  • hashmap.c中的default_hash换成hashmap_algos.c中的算法之一,并且再次通过所有测试。
  • hashmap_algos_tests.c添加default_hash,并将它与其它三个哈希函数比较。
  • 寻找一些更多的哈希函数并添加进来,你永远都不可能找到太多的哈希函数!

书籍推荐