5.6.1 示例代码

针对特定用途和条件开发了各种加密方法,包括加密和解密数据(来确保机密性)和检测数据伪造(来确保完整性)等用例。 以下是示例代码,根据每种技术的目的分为三大类加密技术。 在每种情况下,应该能够根据密码技术的特点,选择适当的加密方法和密钥类型。 对于需要更详细考虑的情况,请参见章节“5.6.3.1 选择加密方法”。

在使用加密技术设计实现之前,请务必阅读“5.6.3.3 防止随机数字生成器中的漏洞的措施”。

保护数据免受第三方窃听

检测第三方所做的数据伪造

5.6.1.1 使用基于密码的密钥的加密和解密

你可以使用基于密码的密钥加密,来保护用户的机密数据资产。

要点:

  1. 显式指定加密模式和填充。
  2. 使用强加密技术(特别是符合相关标准的技术),包括算法,分组加密模式和填充模式。
  3. 从密码生成密钥时,使用盐。
  4. 从密码生成密钥时,指定适当的哈希迭代计数。
  5. 使用足以保证加密强度的密钥长度。

AesCryptoPBEKey.java

package org.jssec.android.cryptsymmetricpasswordbasedkey;

import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.spec.InvalidKeySpecException;
import java.util.Arrays;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.PBEKeySpec;

public final class AesCryptoPBEKey {

    // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
    // *** POINT 2 *** Use strong encryption technologies (specifically, technologies that meet the relevant criteria), including algorithms, block cipher modes, and padding modes.
    // Parameters passed to the getInstance method of the Cipher class: Encryption algorithm, block encryption mode, padding rule
    // In this sample, we choose the following parameter values: encryption algorithm=AES, block encryption mode=CBC, padding rule=PKCS7Padding
    private static final String TRANSFORMATION = "AES/CBC/PKCS7Padding";
    // A string used to fetch an instance of the class that generates the key
    private static final String KEY_GENERATOR_MODE = "PBEWITHSHA256AND128BITAES-CBC-BC";
    // *** POINT 3 *** When generating a key from a password, use Salt.
    // Salt length in bytes
    public static final int SALT_LENGTH_BYTES = 20;
    // *** POINT 4 *** When generating a key from a password, specify an appropriate hash iteration count.
    // Set the number of mixing repetitions used when generating keys via PBE
    private static final int KEY_GEN_ITERATION_COUNT = 1024;
    // *** POINT 5 *** Use a key of length sufficient to guarantee the strength of encryption.
    // Key length in bits
    private static final int KEY_LENGTH_BITS = 128;
    private byte[] mIV = null;
    private byte[] mSalt = null;
    
    public byte[] getIV() {
        return mIV;
    }
    
    public byte[] getSalt() {
        return mSalt;
    }
    
    AesCryptoPBEKey(final byte[] iv, final byte[] salt) {
        mIV = iv;
        mSalt = salt;
    }
    
    AesCryptoPBEKey() {
        mIV = null;
        initSalt();
    }
    
    private void initSalt() {
        mSalt = new byte[SALT_LENGTH_BYTES];
        SecureRandom sr = new SecureRandom();
        sr.nextBytes(mSalt);
    }
    
    public final byte[] encrypt(final byte[] plain, final char[] password) {
        byte[] encrypted = null;
        try {
            // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
            // *** POINT 2 *** Use strong encryption technologies (specifically, technologies that meet the relevant criteria), including algorithms, modes, and padding.
            Cipher cipher = Cipher.getInstance(TRANSFORMATION);
            // *** POINT 3 *** When generating keys from passwords, use Salt.
            SecretKey secretKey = generateKey(password, mSalt);
            cipher.init(Cipher.ENCRYPT_MODE, secretKey);
            mIV = cipher.getIV();
            encrypted = cipher.doFinal(plain);
        } catch (NoSuchAlgorithmException e) {
        } catch (NoSuchPaddingException e) {
        } catch (InvalidKeyException e) {
        } catch (IllegalBlockSizeException e) {
        } catch (BadPaddingException e) {
        } finally {
        }
        return encrypted;
    }
    
    public final byte[] decrypt(final byte[] encrypted, final char[] password) {
        byte[] plain = null;
        try {
            // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
            // *** POINT 2 *** Use strong encryption technologies (specifically, technologies that meet the relevant criteria), including algorithms, block cipher modes, and padding modes.
            Cipher cipher = Cipher.getInstance(TRANSFORMATION);
            // *** POINT 3 *** When generating a key from a password, use Salt.
            SecretKey secretKey = generateKey(password, mSalt);
            IvParameterSpec ivParameterSpec = new IvParameterSpec(mIV);
            cipher.init(Cipher.DECRYPT_MODE, secretKey, ivParameterSpec);
            plain = cipher.doFinal(encrypted);
        } catch (NoSuchAlgorithmException e) {
        } catch (NoSuchPaddingException e) {
        } catch (InvalidKeyException e) {
        } catch (InvalidAlgorithmParameterException e) {
        } catch (IllegalBlockSizeException e) {
        } catch (BadPaddingException e) {
        } finally {
        }
        return plain;
    }
    
    private static final SecretKey generateKey(final char[] password, final byte[] salt) {
        SecretKey secretKey = null;
        PBEKeySpec keySpec = null;
        try {
            // *** POINT 2 *** Use strong encryption technologies (specifically, technologies that meet the relevant criteria), including algorithms, block cipher modes, and padding modes.
            // Fetch an instance of the class that generates the key
            // In this example, we use a KeyFactory that uses SHA256 to generate AES-CBC 128-bit keys.
            SecretKeyFactory secretKeyFactory = SecretKeyFactory.getInstance(KEY_GENERATOR_MODE);
            // *** POINT 3 *** When generating a key from a password, use Salt.
            // *** POINT 4 *** When generating a key from a password, specify an appropriate hash iteration count.
            // *** POINT 5 *** Use a key of length sufficient to guarantee the strength of encryption.
            keySpec = new PBEKeySpec(password, salt, KEY_GEN_ITERATION_COUNT, KEY_LENGTH_BITS);
            // Clear password
            Arrays.fill(password, '?');
            // Generate the key
            secretKey = secretKeyFactory.generateSecret(keySpec);
        } catch (NoSuchAlgorithmException e) {
        } catch (InvalidKeySpecException e) {
        } finally {
        keySpec.clearPassword();
        }
        return secretKey;
    }
}

5.6.1.2 使用公钥的加密和解密

在某些情况下,数据加密仅在应用端使用存储的公钥来执行,而解密在单独安全位置(如服务器)在私钥下执行。 在这种情况下,可以使用公钥(非对称密钥)加密。

要点:

  1. 显式指定加密模式和填充
  2. 使用强加密方法(特别是符合相关标准的技术),包括算法,分组加密模式和填充模式。
  3. 使用足以保证加密强度的密钥长度。

RsaCryptoAsymmetricKey.java

package org.jssec.android.cryptasymmetrickey;

import java.security.InvalidKeyException;
import java.security.KeyFactory;
import java.security.NoSuchAlgorithmException;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.interfaces.RSAPublicKey;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;

public final class RsaCryptoAsymmetricKey {

    // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
    // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms, block cipher modes, and padding modes..
    // Parameters passed to getInstance method of the Cipher class: Encryption algorithm, block encryption mode, padding rule
    // In this sample, we choose the following parameter values: encryption algorithm=RSA, block encryption mode=NONE, padding rule=OAEPPADDING.
    private static final String TRANSFORMATION = "RSA/NONE/OAEPPADDING";
    // encryption algorithm
    private static final String KEY_ALGORITHM = "RSA";
    // *** POINT 3 *** Use a key of length sufficient to guarantee the strength of encryption.
    // Check the length of the key
    private static final int MIN_KEY_LENGTH = 2000;
    
    RsaCryptoAsymmetricKey() {
    }
    
    public final byte[] encrypt(final byte[] plain, final byte[] keyData) {
        byte[] encrypted = null;
        try {
            // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
            // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms, block cipher modes, and padding modes..
            Cipher cipher = Cipher.getInstance(TRANSFORMATION);
            PublicKey publicKey = generatePubKey(keyData);
            if (publicKey != null) {
                cipher.init(Cipher.ENCRYPT_MODE, publicKey);
                encrypted = cipher.doFinal(plain);
            }
        } catch (NoSuchAlgorithmException e) {
        } catch (NoSuchPaddingException e) {
        } catch (InvalidKeyException e) {
        } catch (IllegalBlockSizeException e) {
        } catch (BadPaddingException e) {
        } finally {
        }
        return encrypted;
    }
    
    public final byte[] decrypt(final byte[] encrypted, final byte[] keyData) {
        // In general, decryption procedures should be implemented on the server side;
        // however, in this sample code we have implemented decryption processing within the application to ensure confirmation of proper execution.
        // When using this sample code in real-world applications, be careful not to retain any private keys within the application.
        byte[] plain = null;
        try {
            // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
            // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms, block cipher modes, and padding modes..
            Cipher cipher = Cipher.getInstance(TRANSFORMATION);
            PrivateKey privateKey = generatePriKey(keyData);
            cipher.init(Cipher.DECRYPT_MODE, privateKey);
            plain = cipher.doFinal(encrypted);
        } catch (NoSuchAlgorithmException e) {
        } catch (NoSuchPaddingException e) {
        } catch (InvalidKeyException e) {
        } catch (IllegalBlockSizeException e) {
        } catch (BadPaddingException e) {
        } finally {
        }
        return plain;
    }
    
    private static final PublicKey generatePubKey(final byte[] keyData) {
        PublicKey publicKey = null;
        KeyFactory keyFactory = null;
        try {
            keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);
            publicKey = keyFactory.generatePublic(new X509EncodedKeySpec(keyData));
        } catch (IllegalArgumentException e) {
        } catch (NoSuchAlgorithmException e) {
        } catch (InvalidKeySpecException e) {
        } finally {
        }
        // *** POINT 3 *** Use a key of length sufficient to guarantee the strength of encryption.
        // Check the length of the key
        if (publicKey instanceof RSAPublicKey) {
            int len = ((RSAPublicKey) publicKey).getModulus().bitLength();
            if (len < MIN_KEY_LENGTH) {
                publicKey = null;
            }
        }
        return publicKey;
    }
    
    private static final PrivateKey generatePriKey(final byte[] keyData) {
        PrivateKey privateKey = null;
        KeyFactory keyFactory = null;
        try {
            keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);
            privateKey = keyFactory.generatePrivate(new PKCS8EncodedKeySpec(keyData));
        } catch (IllegalArgumentException e) {
        } catch (NoSuchAlgorithmException e) {
        } catch (InvalidKeySpecException e) {
        } finally {
        }
        return privateKey;
    }
}

5.6.1.3 使用预共享密钥的加密和解密

预共享密钥可用于处理大型数据集,或保护应用或用户资产的机密性。

要点:

  1. 显式指定加密模式和填充
  2. 使用强加密方法(特别是符合相关标准的技术),包括算法,分组加密模式和填充模式。
  3. 使用足以保证加密强度的密钥长度。

AesCryptoPreSharedKey.java

package org.jssec.android.cryptsymmetricpresharedkey;

import java.security.InvalidAlgorithmParameterException;
import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import javax.crypto.BadPaddingException;
import javax.crypto.Cipher;
import javax.crypto.IllegalBlockSizeException;
import javax.crypto.NoSuchPaddingException;
import javax.crypto.SecretKey;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;

public final class AesCryptoPreSharedKey {

    // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
    // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant cr
    iteria), including algorithms, block cipher modes, and padding modes.
    // Parameters passed to getInstance method of the Cipher class: Encryption algorithm, block encryption mode, padding rule
    // In this sample, we choose the following parameter values: encryption algorithm=AES, block encryption mode=CBC, padding rule=PKCS7Padding
    private static final String TRANSFORMATION = "AES/CBC/PKCS7Padding";
    // Encryption algorithm
    private static final String KEY_ALGORITHM = "AES";
    // Length of IV in bytes
    public static final int IV_LENGTH_BYTES = 16;
    // *** POINT 3 *** Use a key of length sufficient to guarantee the strength of encryption
    // Check the length of the key
    private static final int MIN_KEY_LENGTH_BYTES = 16;
    private byte[] mIV = null;
    
    public byte[] getIV() {
        return mIV;
    }
    
    AesCryptoPreSharedKey(final byte[] iv) {
        mIV = iv;
    }
    
    AesCryptoPreSharedKey() {
    }
    
    public final byte[] encrypt(final byte[] keyData, final byte[] plain) {
        byte[] encrypted = null;
        try {
            // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
            // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms, block cipher modes, and padding modes.
            Cipher cipher = Cipher.getInstance(TRANSFORMATION);
            SecretKey secretKey = generateKey(keyData);
            if (secretKey != null) {
                cipher.init(Cipher.ENCRYPT_MODE, secretKey);
                mIV = cipher.getIV();
                encrypted = cipher.doFinal(plain);
            }
        } catch (NoSuchAlgorithmException e) {
        } catch (NoSuchPaddingException e) {
        } catch (InvalidKeyException e) {
        } catch (IllegalBlockSizeException e) {
        } catch (BadPaddingException e) {
        } finally {
        }
        return encrypted;
    }
    
    public final byte[] decrypt(final byte[] keyData, final byte[] encrypted) {
        byte[] plain = null;
        try {
            // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
            // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms, block cipher modes, and padding modes.
            Cipher cipher = Cipher.getInstance(TRANSFORMATION);
            SecretKey secretKey = generateKey(keyData);
            if (secretKey != null) {
                IvParameterSpec ivParameterSpec = new IvParameterSpec(mIV);
                cipher.init(Cipher.DECRYPT_MODE, secretKey, ivParameterSpec);
                plain = cipher.doFinal(encrypted);
            }
        } catch (NoSuchAlgorithmException e) {
        } catch (NoSuchPaddingException e) {
        } catch (InvalidKeyException e) {
        } catch (InvalidAlgorithmParameterException e) {
        } catch (IllegalBlockSizeException e) {
        } catch (BadPaddingException e) {
        } finally {
        }
        return plain;
    }
    
    private static final SecretKey generateKey(final byte[] keyData) {
        SecretKey secretKey = null;
        try {
            // *** POINT 3 *** Use a key of length sufficient to guarantee the strength of encryption
            if (keyData.length >= MIN_KEY_LENGTH_BYTES) {
                // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms, block cipher modes, and padding modes.
                secretKey = new SecretKeySpec(keyData, KEY_ALGORITHM);
            }
        } catch (IllegalArgumentException e) {
        } finally {
        }
        return secretKey;
    }
}

5.6.1.4 使用基于密码的密钥来检测数据伪造

你可以使用基于密码的(共享密钥)加密来验证用户数据的完整性。

要点:

  1. 显式指定加密模式和填充。
  2. 使用强加密方法(特别是符合相关标准的技术),包括算法,分组加密模式和填充模式。
  3. 从密码生成密钥时,使用盐。
  4. 从密码生成密钥时,指定适当的哈希迭代计数。
  5. 使用足以保证 MAC 强度的密钥长度。

HmacPBEKey.java

package org.jssec.android.signsymmetricpasswordbasedkey;

import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.security.SecureRandom;
import java.security.spec.InvalidKeySpecException;
import java.util.Arrays;
import javax.crypto.Mac;
import javax.crypto.SecretKey;
import javax.crypto.SecretKeyFactory;
import javax.crypto.spec.PBEKeySpec;

public final class HmacPBEKey {

    // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
    // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms, block cipher modes, and padding modes.
    // Parameters passed to the getInstance method of the Mac class: Authentication mode
    private static final String TRANSFORMATION = "PBEWITHHMACSHA1";
    // A string used to fetch an instance of the class that generates the key
    private static final String KEY_GENERATOR_MODE = "PBEWITHHMACSHA1";
    // *** POINT 3 *** When generating a key from a password, use Salt.
    // Salt length in bytes
    public static final int SALT_LENGTH_BYTES = 20;
    // *** POINT 4 *** When generating a key from a password, specify an appropriate hash iteration count.
    // Set the number of mixing repetitions used when generating keys via PBE
    private static final int KEY_GEN_ITERATION_COUNT = 1024;
    // *** POINT 5 *** Use a key of length sufficient to guarantee the MAC strength.
    // Key length in bits
    private static final int KEY_LENGTH_BITS = 160;
    private byte[] mSalt = null;
    
    public byte[] getSalt() {
        return mSalt;
    }
    
    HmacPBEKey() {
        initSalt();
    }
    
    HmacPBEKey(final byte[] salt) {
        mSalt = salt;
    }
    
    private void initSalt() {
        mSalt = new byte[SALT_LENGTH_BYTES];
        SecureRandom sr = new SecureRandom();
        sr.nextBytes(mSalt);
    }
    
    public final byte[] sign(final byte[] plain, final char[] password) {
        return calculate(plain, password);
    }
    
    private final byte[] calculate(final byte[] plain, final char[] password) {
        byte[] hmac = null;
        try {
            // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
            // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms, block cipher modes, and padding modes.
            Mac mac = Mac.getInstance(TRANSFORMATION);
            // *** POINT 3 *** When generating a key from a password, use Salt.
            SecretKey secretKey = generateKey(password, mSalt);
            mac.init(secretKey);
            hmac = mac.doFinal(plain);
        } catch (NoSuchAlgorithmException e) {
        } catch (InvalidKeyException e) {
        } finally {
        }
        return hmac;
    }
    
    public final boolean verify(final byte[] hmac, final byte[] plain, final char[] password) {
        byte[] hmacForPlain = calculate(plain, password);
        if (Arrays.equals(hmac, hmacForPlain)) {
            return true;
        }
        return false;
    }
    
    private static final SecretKey generateKey(final char[] password, final byte[] salt) {
        SecretKey secretKey = null;
        PBEKeySpec keySpec = null;
        try {
            // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms, block cipher modes, and padding modes.
            // Fetch an instance of the class that generates the key
            // In this example, we use a KeyFactory that uses SHA1 to generate AES-CBC 128-bit keys.
            SecretKeyFactory secretKeyFactory = SecretKeyFactory.getInstance(KEY_GENERATOR_MODE);
            // *** POINT 3 *** When generating a key from a password, use Salt.
            // *** POINT 4 *** When generating a key from a password, specify an appropriate hash iteration count.
            // *** POINT 5 *** Use a key of length sufficient to guarantee the MAC strength.
            keySpec = new PBEKeySpec(password, salt, KEY_GEN_ITERATION_COUNT, KEY_LENGTH_BITS);
            // Clear password
            Arrays.fill(password, '?');
            // Generate the key
            secretKey = secretKeyFactory.generateSecret(keySpec);
        } catch (NoSuchAlgorithmException e) {
        } catch (InvalidKeySpecException e) {
        } finally {
            keySpec.clearPassword();
        }
        return secretKey;
    }
}

5.6.1.5 使用公钥来检测数据伪造

所处理的数据的签名,由存储在不同的安全位置(如服务器)中的私钥确定时,你可以使用公钥(不对称密钥)加密来处理涉及应用端公钥存储的应用,出于验证数据签名的目的。

要点:

  1. 显式指定加密模式和填充。
  2. 使用强加密方法(特别是符合相关标准的技术),包括算法,分组加密模式和填充模式。
  3. 使用足以保证签名强度的密钥长度。

RsaSignAsymmetricKey.java

package org.jssec.android.signasymmetrickey;

import java.security.InvalidKeyException;
import java.security.KeyFactory;
import java.security.NoSuchAlgorithmException;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.Signature;
import java.security.SignatureException;
import java.security.interfaces.RSAPublicKey;
import java.security.spec.InvalidKeySpecException;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;

public final class RsaSignAsymmetricKey {

    // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
    // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms, block cipher modes, and padding modes.
    // Parameters passed to the getInstance method of the Cipher class: Encryption algorithm, block encryption mode, padding rule
    // In this sample, we choose the following parameter values: encryption algorithm=RSA, block encryption mode=NONE, padding rule=OAEPPADDING.
    private static final String TRANSFORMATION = "SHA256withRSA";
    // encryption algorithm
    private static final String KEY_ALGORITHM = "RSA";
    // *** POINT 3 *** Use a key of length sufficient to guarantee the signature strength.
    // Check the length of the key
    private static final int MIN_KEY_LENGTH = 2000;
    
    RsaSignAsymmetricKey() {
    }
    
    public final byte[] sign(final byte[] plain, final byte[] keyData) {
        // In general, signature procedures should be implemented on the server side;
        // however, in this sample code we have implemented signature processing within the application to ensure confirmation of proper execution.
        // When using this sample code in real-world applications, be careful not to retain any private keys within the application.
        byte[] sign = null;
        try {
            // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
            // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms, block cipher modes, and padding modes.
            Signature signature = Signature.getInstance(TRANSFORMATION);
            PrivateKey privateKey = generatePriKey(keyData);
            signature.initSign(privateKey);
            signature.update(plain);
            sign = signature.sign();
        } catch (NoSuchAlgorithmException e) {
        } catch (InvalidKeyException e) {
        } catch (SignatureException e) {
        } finally {
        }
        return sign;
    }
    
    public final boolean verify(final byte[] sign, final byte[] plain, final byte[] keyData) {
        boolean ret = false;
        try {
            // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
            // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms, block cipher modes, and padding modes.
            Signature signature = Signature.getInstance(TRANSFORMATION);
            PublicKey publicKey = generatePubKey(keyData);
            signature.initVerify(publicKey);
            signature.update(plain);
            ret = signature.verify(sign);
        } catch (NoSuchAlgorithmException e) {
        } catch (InvalidKeyException e) {
        } catch (SignatureException e) {
        } finally {
        }
        return ret;
    }
    
    private static final PublicKey generatePubKey(final byte[] keyData) {
        PublicKey publicKey = null;
        KeyFactory keyFactory = null;
        try {
            keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);
            publicKey = keyFactory.generatePublic(new X509EncodedKeySpec(keyData));
        } catch (IllegalArgumentException e) {
        } catch (NoSuchAlgorithmException e) {
        } catch (InvalidKeySpecException e) {
        } finally {
        }
        // *** POINT 3 *** Use a key of length sufficient to guarantee the signature strength.
        // Check the length of the key
        if (publicKey instanceof RSAPublicKey) {
            int len = ((RSAPublicKey) publicKey).getModulus().bitLength();
            if (len < MIN_KEY_LENGTH) {
                publicKey = null;
            }
        }
        return publicKey;
    }
    
    private static final PrivateKey generatePriKey(final byte[] keyData) {
        PrivateKey privateKey = null;
        KeyFactory keyFactory = null;
        try {
            keyFactory = KeyFactory.getInstance(KEY_ALGORITHM);
            privateKey = keyFactory.generatePrivate(new PKCS8EncodedKeySpec(keyData));
        } catch (IllegalArgumentException e) {
        } catch (NoSuchAlgorithmException e) {
        } catch (InvalidKeySpecException e) {
        } finally {
        }
        return privateKey;
    }
}

5.6.1.6 使用预共享密钥来检测数据伪造

你可以使用预共享密钥来验证应用资产或用户资产的完整性。

要点:

  1. 显式指定加密模式和填充。
  2. 使用强加密方法(特别是符合相关标准的技术),包括算法,分组加密模式和填充模式。
  3. 使用足以保证 MAC 强度的密钥长度。

HmacPreSharedKey.java

package org.jssec.android.signsymmetricpresharedkey;

import java.security.InvalidKeyException;
import java.security.NoSuchAlgorithmException;
import java.util.Arrays;
import javax.crypto.Mac;
import javax.crypto.SecretKey;
import javax.crypto.spec.SecretKeySpec;

public final class HmacPreSharedKey {

    // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
    // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms, block cipher modes, and padding modes.
    // Parameters passed to the getInstance method of the Mac class: Authentication mode
    private static final String TRANSFORMATION = "HmacSHA256";
    // Encryption algorithm
    private static final String KEY_ALGORITHM = "HmacSHA256";
    // *** POINT 3 *** Use a key of length sufficient to guarantee the MAC strength.
    // Check the length of the key
    private static final int MIN_KEY_LENGTH_BYTES = 16;
    
    HmacPreSharedKey() {
    }
    
    public final byte[] sign(final byte[] plain, final byte[] keyData) {
        return calculate(plain, keyData);
    }
    
    public final byte[] calculate(final byte[] plain, final byte[] keyData) {
        byte[] hmac = null;
        try {
            // *** POINT 1 *** Explicitly specify the encryption mode and the padding.
            // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms, block cipher modes, and padding modes.
            Mac mac = Mac.getInstance(TRANSFORMATION);
            SecretKey secretKey = generateKey(keyData);
            if (secretKey != null) {
                mac.init(secretKey);
                hmac = mac.doFinal(plain);
            }
        } catch (NoSuchAlgorithmException e) {
        } catch (InvalidKeyException e) {
        } finally {
        }
        return hmac;
    }
    
    public final boolean verify(final byte[] hmac, final byte[] plain, final byte[] keyData) {
    byte[] hmacForPlain = calculate(plain, keyData);
        if (hmacForPlain != null && Arrays.equals(hmac, hmacForPlain)) {
            return true;
        }
        return false;
    }
    
    private static final SecretKey generateKey(final byte[] keyData) {
        SecretKey secretKey = null;
        try {
            // *** POINT 3 *** Use a key of length sufficient to guarantee the MAC strength.
            if (keyData.length >= MIN_KEY_LENGTH_BYTES) {
            // *** POINT 2 *** Use strong encryption methods (specifically, technologies that meet the relevant criteria), including algorithms, block cipher modes, and padding modes.
            secretKey = new SecretKeySpec(keyData, KEY_ALGORITHM);
            }
        } catch (IllegalArgumentException e) {
        } finally {
        }
        return secretKey;
    }
}

书籍推荐